Germline TRAV5D-4 T-Cell Receptor Sequence Targets a Primary Insulin Peptide of NOD Mice
نویسندگان
چکیده
There is accumulating evidence that autoimmunity to insulin B chain peptide, amino acids 9-23 (insulin B:9-23), is central to development of autoimmune diabetes of the NOD mouse model. We hypothesized that enhanced susceptibility to autoimmune diabetes is the result of targeting of insulin by a T-cell receptor (TCR) sequence commonly encoded in the germline. In this study, we aimed to demonstrate that a particular Vα gene TRAV5D-4 with multiple junction sequences is sufficient to induce anti-islet autoimmunity by studying retrogenic mouse lines expressing α-chains with different Vα TRAV genes. Retrogenic NOD strains expressing Vα TRAV5D-4 α-chains with many different complementarity determining region (CDR) 3 sequences, even those derived from TCRs recognizing islet-irrelevant molecules, developed anti-insulin autoimmunity. Induction of insulin autoantibodies by TRAV5D-4 α-chains was abrogated by the mutation of insulin peptide B:9-23 or that of two amino acid residues in CDR1 and 2 of the TRAV5D-4. TRAV13-1, the human ortholog of murine TRAV5D-4, was also capable of inducing in vivo anti-insulin autoimmunity when combined with different murine CDR3 sequences. Targeting primary autoantigenic peptides by simple germline-encoded TCR motifs may underlie enhanced susceptibility to the development of autoimmune diabetes.
منابع مشابه
Type 1 diabetes: primary antigen/peptide/register/trimolecular complex.
Type 1A diabetes (autoimmune) is now immunologically predictable in man, but preventable only in animal models. What triggers the development of autoimmunity in genetically susceptible individuals remains unknown. Studies of non-obese diabetic (NOD) mice reveal that interactions between T-cell receptors of diabetogenic T cell and an MHC class II loaded with an autoantigen are key determinates o...
متن کاملParadigm Shift or Shifting Paradigm for Type 1 Diabetes
The age of onset of type 1A diabetes is now immunologically predictable (1). Either because of a lack of sufficient understanding of the pathogenesis of type 1A (immune-mediated) diabetes or a lack of effective therapeutics directed at relevant pathogenic pathways (or both), we cannot yet prevent this disease (2). The article by Liu et al. (3) in this issue of Diabetes addresses both issues in ...
متن کاملTreatment effect of GABA on improve type one diabetes in NOD mice
Introduction: Gama amino butyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian nervous system. The concentration of GABA and the number of GABA cell secretion decrease in diabetic patient and experimental diabetes model. The reported effects of GABA activation on insulin secretion from beta cells have been controversial. In this study we investigated if GABA administr...
متن کاملActivation of Insulin-Reactive CD8 T-Cells for Development of Autoimmune Diabetes
OBJECTIVE We have previously reported a highly diabetogenic CD8 T-cell clone, G9C8, in the nonobese diabetic (NOD) mouse, specific to low-avidity insulin peptide B15-23, and cells responsive to this antigen are among the earliest islet infiltrates. We aimed to study the selection, activation, and development of the diabetogenic capacity of these insulin-reactive T-cells. RESEARCH DESIGN AND M...
متن کاملLow-Affinity Major Histocompatibility Complex–Binding Peptides in Type 1 Diabetes
Type 1 diabetes is characterized by T-cell–mediated destruction of insulin-producing -cells. The strong association between autoimmune diabetes and certain susceptible major histocompatibility complex (MHC) class II alleles suggests that T-cell activation by self-peptides presented via these MHC class II alleles plays a critical role in the disorder’s pathogenesis. A diverse repertoire of T-cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 61 شماره
صفحات -
تاریخ انتشار 2012